SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road - 517583 **QUESTION BANK (DESCRIPTIVE) Subject with Code :** Digital Logic Design(18CS502) Course & Branch: B.Tech - CSE **Regulation:** R18 UNIT –I **Binary Systems, Boolean Alegebra & Logic Gates 2 MARKS QUESTIONS** 1. What are the characteristics of Digital Systems. (2M) 2. Convert (15) $_{10}$ to Binary (2M) 3. Explain about Diminished Radix complement (2M) 4 .What is meant by parity bit? (2M) 5. Define duality property. (2M) 6. Define binary logic? (2M) 7. Which gates are called as the universal gates? What are its advantages? (2M) 8. State the associative property of Boolean algebra. (2M)

9 Explain classification of Number system (2M) 10. What is a prime implicate? (2M)

10 MARKS QUESTIONS

1 a) Convert the following numbers	(L5) (5M)
 i)(163.789)₁₀ to Octal number ii)(11001101.0101)₂ to base-8 and base-4 iii)(4567)₁₀ to base2 iv) (4D.56)₁₆ to Binary b) Subtract (111001)₂ from (101011) using 1's complement? 	(L5) (5M)
 a) Represent the decimal number 3452 in i)BCD ii)Excess-3 b) perform (-50)-(-10) in binary using the signed-2's complement c) Determine the value of base x if(211)x=(152)₈ a) Convert the following numbers i) (250.5)₁₀ = ()₂ ii)) (673.23)₁₀ = ()₈ iii)(101110.01)₂=()₈ b) Convert the following to binary and then to gray code (AB33)₁₆ 	(L5) (5M) (L4) (2M) (L4) (2M) (L5) (3M) (L2) (2M)

Digital Logic Design

Year & Sem: I-B.Tech & II-Sem

QUESTION BAN	NK 2018
c) Perform the following Using BCD arithmetic (7129) $_{10}$ + (7711) $_{10}$	(L3) (3M)
4. Explain the Binary codes with examples?	(L5) (10M)
5. a) What is Digital System? Characteristics of digital systems.	(L5)(5M)
b) Explain the difference between analog and digital systems	(L5) (5M)
 6. a) Design the circuit by Using NAND gates F= ABC'+ DE+ AB'D' b) Simplify and implementation the following SOP function using NOR gates F(A,B,C,D)=∑m(0,1,4,5,10,11,14,15) 	(L5) (5M) (L3) (5M)
7. Convert the following a) $(1AD)_{16}=()_{10}$ b) $(453)_8=()_{10}$ c) $(10110011)_2=()_{10}$ d) $(5436)_{10}=() 3$.	(L2) (5M)
8 a)Explain binary to Gray & Gray to binary conversion with example?	(L5) (5M)
b) State and Explain the DeMorgan's Theorem and Consensus Theorem	(L3) (5M)
9) Convert the following numbers i) $(615)_{10} = ()_{16}$ ii) $(214)_{10} = ()_8$ iii) $(0.8125)_{10} = ()_2$ iv) $(658.825)_{10} = ()_8$ v) $(54)_{10} = ()_2$	(L2) (5M)
10) Explain the Excess-3 code? Write about Error correction & Detection?	(L5) (5M)

\

<u>UNIT –II</u>

Gate Level Minimization

2 MARKS QUESTIONS

1.	What is meant by karnaugh map or K-Map method?	(2M)
2.	Define Pair, Quad, and Octet	(2M)
3.	What are called don't care conditions?	(2M)
4.	What are the 2 forms of Boolean expression?	(2M)
5.	Define Minterm & Maxterm	(2M)
6.	Explain SOP and POS form	(2M)
7.	Explain Canonical SOP form	(2M)
8.	State De Morgan's theorem	(2M)
9.	Explain demorgan's law	(2M)
10.	. What is an essential prime implicante	(2M)

10 MARKS QUESTIONS

1.	Simplify the Boolean expression using K-MAP	(L5) (10M)
2.	$F(A,B,C,D,E) = \sum m(0,1,4,5,16,1721,25,29)$ Simplify the Boolean expression using K-MAP $F(A,B,C,D) = \sum m(1,2,3,8,9,10,11,14) + d(7,15)$	(L5) (10M)

3. Simplify the Boolean expression using K-map and implement using NAND gates $F(A,B,C,D) = \sum m(0,2,3,8,10,11,12,14)$ (L4) (10M)

4. Simplify the Boolean expressions to minimum number of literals
i) (A + B)(A + C')(B' + C') (L3) (3M)

ii) AB + (AC)' + AB'C (AB + C) (L3)(4M)

- iii) (A+B)' (A'+B')' (L5) (3M)
- 5. Reduce the expression $f(x,y,z,w) = \pi M(0,2,7,8,9,10,11,15) .d (3,4)$ using K-Map? (L5) (10M)
- 6. Simplify the Boolean expression using K-map? (L5) (10M)

 $F(A,B,C,D,E) = \sum m(0,2,4,6,9,11,13,15,17,21,25,27,29,31)$

QUEST	ION BANK	2018
7. Obtain the a) SOP b) POS expression for the function given below $F(A,B,C,D) = \sum m(0,1,2,5,8,9,10)$	(L5) (10N	A)
8. a) Simplify the Boolean expressions to minimum number of literals	(L4) (5M)
 i) X' + XY + X Z' + XYZ' ii) (X+Y) (X+Y') 9. b) Obtain the Complement of Boolean Expression i) A+B+A'B'C ii) AB + A (B + C) + B'(B+D) 10. Determine the minimal sum of product form of a) f(w,x,y,z)=∑m(4,5,7,12,14,15) +d(3,8,10) 	(L4) (5M (L4) (5M	,
b) $F(A,B,C,D) = \pi M(0,3,5,6,8,12,15)$		

<u>UNIT –III</u>

Combinational Logic

2 MARKS QUESTIONS

1. Define combinational logic.	(2M)
2. Explain the design procedure for combinational circuits	(2M)
3. Define Half adder and full adder	(2M)
4. What is Decoder	(2M)
5. Define Encoder?	(2M)
6. Construct 2:1 multiplexer?	(2M)
7. Define subtractor?	(2M)
8. Difference between encoder and decoder	(2M)
9. Define de-multiplexer?	(2M)
10. Explain Applications of Multiplexer	(2M)

10 MARKS QUESTIONS

1. Implement BCD to 7-segment decoder for cathode type using 4:16 decoder?	(L5) (10M)
2. A)Implement the following Boolean function using 8:1 multiplexer F(A, B, C, D) = A'BD' + ACD + A'C' D + B'CD	(L5) (5M)
B)Explain about Full Adder?	(L2) (5M)
3. A) Explain about 2-bit Magnitude Comparator?	(L2) (5M)
B) Explain Full binary subtractor in detail?	(L2) (5M)
4. Design the combinational circuit binary to gray code?	(L5) (10M)
5. A)Explain about Binary Multiplier?	(L2) (5M)
B)What is memory decoding? Explain about the construction of 4 X 4 RAM ?	(L2) (5M)
6. A) Implement the following Boolean function using 8:1 multiplexer	(L5)(5M)
$F(A,B,C.D) = \Sigma m (0,1,2,5,7,8,9,14,15)$ B) Explain about Decimal Adder?	(L2) (5M)
7. A)Design a 4 bit adder-subtractor circuit and explain the operation in detail?	(L5) (5M)
B) Explain the functionality of a Multiplexer?	(L2) (5M)
Digital Logic Design	Page 5

QUESTION B	ANK 2018
8. Explain The Half adder? Implement the full adder using two half adders (L5	5) (10M)
9. A)Design a 4 bit binary parallel subtractor and the explain operation in detail?	(L5) (5M)
B) Design the combinational circuit of 4 Bit Parallel Adder?	(L5) (5M)
10. a)What is the truth table of Half-subtractor?	(L1) (2M)
b) Define priority encoder?	(L1)(2M)
c) Explain the design procedure for combinational circuit?	(L1) (2M)
d) Design 4 bit parallel Adder?	(L5) (2M)
e)Define Multiplexer and applications of multiplexer?	(L1) (2M)

QUESTION BANK 2018 UNIT –IV **Synchronous Sequential Logic 2 MARKS QUESTIONS** 1. What are the classifications of sequential circuits? (2M) 2. What is the operation of D flip-flop? (2M) 3. What is flip-flop (2M) 4. Define Race Around Condition (2M) 5. Difference between latch and flip-flop (2M) 6. Define Propagation Delay (2M) 7. What is Master Slave Flip-flop (2M) 8. Explain Shift Registers (2M) 9. What are the applications of Flip-flops (2M) 10. What is state diagram (2M) **10 MARKS QUESTIONS** 1. A) Explain the Logic diagram of JK flip-flop? (L2)(5M)B) Write difference between Combinational & Sequential circuits? (L4) (5M) 2. A) Explain the Logic diagram of SR flip-flop? (L2)(5M)B) Design and draw the 3 bit up-down synchronous counter? (L5)(5M)3. A) Draw and explain the operation of D Flip-Flop? (L5)(5M)B) Explain about Shift Registers? (L2)(5M)4. A) Draw and explain the operation of SR LATCH? (L5)(5M)B) Explain about Ring counter? (L2)(5M)5. A) Explain about ripple counter? (L2)(5M)B) What is state assignment? Explain with a suitable example? (L2)(5M)6. Explain the working of the following (L2 & L5) (10M) i) J-K flip-flop ii) S- R flip-flop iii) D flip-flop 7. Explain the design of a 4 bit binary counter with parallel load in detail? (L2) (10M) **Digital Logic Design** Page 7

	QUESTION BANK	2018
8. How does it set eliminate is a Master –slave J-K flip-flop?		(L2)(10M)
9. A) Explain synchronous and ripple counters compare their merits an	d demerits?	(L2) (5M)
B) Design a 4 bit binary synchronous counters with D-flip flop?		(L5 (5M)
10. a)Write the truth table of clocked T- Flip Flop?		(L1) (2M)
b) Define shift registers?		(L1) (2M)
c) Write the differences between latches and flip flops?		(L1)(2M)
d) Write the differences between synchronous and asynchrono	us counters?	(L1) (2M)
e)Define Flip-flop and various types of flip flops?		(L1) (2M)

<u>UNIT –V</u>

Memory and Programmable Logic , Digital Logic Circuits

2 MARKS QUESTIONS

1.	Explain the Classification of memory	(2M)
2.	Define ROM	(2M)
3.	What is Read and Write Operations	(2M)
4.	List the major differences between PLA and PAL	(2M)
5.	Define PLA	(2M)
6.	Differentiate volatile and non-volatile memory	(2M)
7.	What are the different types of ROM	(2M)
8.	Define the Static RAM and Dynamic RAM	(2M)
9.	What is BIT,BYTE and WORD	(2M)
10.	What is Cache Memory	(2M)

10 MARKS QUESTIONS

1. A) Write difference between PROM ,PLA &PAL?	(L4) (5M)
B) Explain about Hamming code?	(L2) (5M)
2. Encode the 11-bit code 10111011101 into 15 bit information code?	(L3)(10M)
3. Implement the following function using PLA $A(x,y,z)=\sum m(1,2,4,6) B(x,y,z)=\sum m(0,1,6,7) C(x,y,z)=\sum m(2,6)$	(L5)(10M)
4. Design PAL for a combinational circuit that squares a 3 bit number?	(L5)(10M)
5. Write about the following	(L2)(10M)
i) Transistor-transistor Logic (TTL)	
ii) Emitter – coupled Logic (ECL)	
iii) CMOS Logic	
6. Construct the PROM using the conversion from BCD code to Excess-3 code?	(L5)(10M)
7. Implement the following functions using PLA.	(L5)(10M)
$A(x,y,z) = \sum m(1,2,4,6) B(x,y,z) = \sum m(0,1,6,7) c(x,y,z) = \sum m(2,6)$	
8. A)Construct the PROM using the conversion from BCD code to Excess-3 code?	(L5)(10M)
9. A)Explain about TTL family ?	(L2)(5M)
B) Explain about memory decoding error detection and correction?	(L2)(5M)
Digital Logic Design	Page 9

10. a)Write the difference between PLA & PAL?b) Define fan out of a logic gate ?c) What is the function of EAROM?	
d) Define CMOS?e) Write a short notes on Programmable array Logic?	(L1) (2M) (L1) (2M) (L1) (2M) (L1) (2M)

Prepared by: P Nirupama, G Prasad Babu, V Balaji

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : Digital Logic Design(18CS502) Year & Sem: I-B.Tech & II-Sem

Course & Branch: B.Tech - CSE Regulation: R18

<u>UNIT – I</u>

Dig	ital Logic Design					Page 11
	14. Distributive law is				[]
	A) Sum	B) carry	C) 0	D) none		
	13. The higher significa	nt bit of this result is ca	alled		[]
	A) 00110	B) 10110	C) 10110	D) 0011		
	12. A decimal number 1	9 is in excess 3 code i	s written as		[]
	A) (1217) ₁₆	B) (028F) 16	C) (2297) 10	D) (0B17) ₁₆		
	11. $(1217)_8$ is equivale	nt to			[]
	A)42479	B)47479	C)47480	D)47481		
	10. 10's complement of	(52520) _{10 is}			[]
	A) 011010010010	B) 000100000101	C) 10010010	D) 10010011		
	9. BCD code for 92				[]
	A) $A^{1}+B^{1}$		C) AB	D) A+B		
	6. $A^{1}B^{1} =$				[]
	A) 10	B) 8	C)16	D) 2		
	5. Decimal value base	is			[]
	A) Gray code	B) Decimal	C) Binary	D) octal		
	4. Non-weighted code	is			[]
	A) 00111100	B) 110000100	C) 1010101010	D) none		
	3. Find 2's complement	nt of (11000100)			[]
	A) 8764	B) 8765	C) 7886	D) 7768		
	2. 9's complement of	1234 is			[]
	A) 1110111.110111	B)111110.010110	C)1111111.11011	10 D)111101.01	0011	
	1. (75.23) is a Octal nu	mber convert to it equi	valent binary numb	er	[]
	<u>Bi</u>	nary Systems, Boolea	n Alegebra & Log	<u>ic Gates</u>		

A) $A(B+C) = AB+AC$	B) AB=BA	C) $A+(B+C)=($	(A+B)+C D) n		_
15. A+1 =				[]
A) A	B) 1	C) 0	D) none	_	_
16. ABC+ABC'=				[]
A) A	B) AB	C) C	D) AC		
17. A+AB=				[]
A) 1	B)0	C) A	D) none		
18. Decimal 12 is in binary i	number system is			[]
A) 1010	B) 1111	C) 1011	D) 1100		
19. Find 1's complement of	(11010100)		_	[]
A) 00101011 B)	11010100	C) 101010100	D) none		
20. What is the maximum n	umber of differen	t boolean functions	s involving n Bool	ean va	riable
				[]
A) n^2 B)	2^n	C)2*n	D)2 ²ⁿ		
21 bit represen	t the sign of the r	number		[]
A)MSB B)L	SB	C)both	D)none		
22. Which gate is generate c	omplement of ou	tput to given input		[]
A) NOT	B) NAND	C)OR	D) XNOR		
23 codes are no	n weighted codes			[]
A) Gray B)	decimal codes	C) binary	D) none		
24. (A+B)+C=A+(B+C) is _		law		[]
A) Associative law	B) commutative	e law C) Distribu	tive law D) none		
25. Example of weighted co	de		_	[]
A) gray B)	8421	C) excess-3	D) none		
26 . 111001 is a binary value	e convert to it equ	ivalent octal		[]
A) 71 B)) 70	C) 15	D) none		
27. 7 is a octal value conver	to it equivalent of	lecimal		[]
A) 8 I	3) 10	C) A	D) none		
28. ASCII stand for	_			[]
B) American standard c		tion interchange			
C) American standard c		e	C) both D) no	one	
29 theorem states that				[]
B) Consensus theorem			D) none	-	-
30. A.A ¹ =	•	*	<i>,</i>	[]

				QUESTION BAN	К 2	018
B) 1	B)0		C) A	D) none		
31. A+A ¹ B=					[]
A) A+B	B) A+BA		C) 0	D) none		
32. Convert AB6 to bi	nary				[]
A) 101011010010	B) 1010101	10110	C) 1010101010	D) 10101111		
33. SOP denotes					[]
A) ∑	Β) π	C)both	A&B	D) none		
34. 1's complement i	s also called as				[]
A) Radix	В) Dimnish	ed radix	C)2 D)15		
35. Which gate is gene	erate complement	nt of outpu	ut to given input		[]
A) NOT	B) NAN	D	C)OR	D) XNOR		
36. The of	digital logic gate	e refers to	the number of in	puts	[]
A) Fan-in	B) fan-out	C) b	oth	D) none		
37. POS denotes					[]
Α) Σ	Β)π	C)) both	D) none		
38. (A+B)+C=A+(B+	C) is	law	V		[]
Associative law	B) comm	utative lav	w C) Distributi	ive law D) none		
39. 231 base is 4 conv	ert to decimal va	lue			[]
A) 45	B) 43		C) 42	D) none		
40. 53 is decimal valu	e convert to its b	oinary valu	ie		[]

<u>UNIT – II</u>

Gate Level Minimization

A) Karnaugh mapB) logic gateC) BSDD) none2.2 variable k map contains	1. Vietch diagram also	known as			[]
A) 8B) 4C)2D)none3. The map method is first proposed by[]A) VietchB) charlasC) karnaugh D) none4. A grouping of 8 bits in K-map known as[]A) byteB) octetC) quadD) none5. Example of UNIVERSAL GATE is[]A)NANDB)NOTC) ORD) none6. The code used for labeling the cells of k map is[]A) grayB) octalC) BCDD) none7. AND Gate requiresMinimum number of inputs.[]A)2B)1C)4D) none8. A pair is a group of adjacent cells in a k-map[]A) 2B)4C)8D) 169. 3 variable k map contains cells[]A) 6B)8C) 5D) 310 is a group of 8 adjacent cells in K-Map[]A) octetB)pairC) quadD) none11. don't care condition represented label as[]]A) SB) XC) dD)both B&C12. The output levels are indicated by "X" or "d" in the truth tables and are called[]A) don't care conditionsB) mintermsC) outputD) none13. Which gate is not universal gate[]]A) NANDB) NORC) XORD) none14. Consider the following Boolean function of four variables f(w,x,y,z)= $\summ(1,3,4,11,12,14)$ Thefunction is[]]function is[]function is[]function is[]function is				D) non	e	
3. The map method is first proposed by [] A) Vietch B) charlas C) karnaugh D) none 4. A grouping of 8 bits in K-map known as [] A)byte B) octet C) quad D) none 5. Example of UNIVERSAL GATE is []] A)byte B) octet C) Quad D) none 5. Example of UNIVERSAL GATE is []] A)NAND B)NOT C) OR D) none 6. The code used for labeling the cells of k map is []] A) gray B) octal C) BCD D) none 7. AND Gate requiresMinimum number of inputs. []] A)2 B)1 C)4 D) none 8. A pair is a group of adjacent cells in a k-map []] A)2 B)4 C)8 D) 16 9. 3 variable k map contains	2. 2 variable k map co	ntains cel	lls		[]
A) VietchB) charlasC) karnaugh D) none4. A grouping of 8 bits in K-map known as	A) 8	B) 4	C)2]	D)none	;
4. A grouping of 8 bits in K-map known as[]A) byteB) octetC) quadD) none5. Example of UNIVERSAL GATE is[]A)NANDB)NOTC) ORD) none6. The code used for labeling the cells of k map is[]A) grayB) octalC) BCDD) none7. AND Gate requiresMinimum number of inputs.[]A)2B)1C)4D) none8. A pair is a group ofadjacent cells in a k-map[]A) 2B) 4C)8D) 169. 3 variable k map contains cells[]A) 6B) 8C) 5D) 310 is a group of 8 adjacent cells in K-Map[]A)octetB)pairC) quadD) none11. don't care condition represented label as[]A) SB) XC) dD)both B&C12. The output levels are indicated by "X" or "d" in the truth tables and are called []A) don't care conditionsB) mintermsC) outputD) none13. Which gate is not universal gate[]A) NANDB) NORC) XORD) none14. Consider the following Boolean function of four variables f(w,x,y,z)= $\sum m(1,3,4,11,12,14)$ The function is[]A) independent of one variableB)independent of two variables[]	3. The map method is	first proposed by			[]
A)byteB) octetC) quadD) none5. Example of UNIVERSAL GATE is[]]A)NANDB)NOTC) ORD) none6. The code used for labeling the cells of k map is[]]A) grayB) octalC) BCDD) none7. AND Gate requiresMinimum number of inputs.[]]A)2B)1C)4D) none8. A pair is a group of adjacent cells in a k-map[]]A) 2B)4C)8D) 169. 3 variable k map contains cells[]]A) 6B) 8C) 5D) 310 is a group of 8 adjacent cells in K-Map[]]A) octetB)pairC) quadD) none11. don't care condition represented label as[]]A) SB) XC) dD)both B&C12. The output levels are indicated by "X" or "d" in the truth tables and are called []][]]A) on't care conditionsB) mintermsC) outputD) none13. Which gate is not universal gate[]]]]A) NANDB) NORC) XORD) none14. Consider the following Boolean function of four variables $f(w,x,y,z)=\summ(1,3,4,11,12,14)$ The function is[]]]]A) independent of one variable	A) Vietch	B) charlas	C) karnaugh D) no	one		
5. Example of UNIVERSAL GATE is [] A)NAND B)NOT C) OR D) none 6. The code used for labeling the cells of k map is []] A) gray B) octal C) OR D) none 7. AND Gate requiresMinimum number of inputs. []] A)2 B)1 C)4 D) none 7. AND Gate requiresMinimum number of inputs. []] A)2 B)1 C)4 D) none 8. A pair is a group of adjacent cells in a k-map []] A) 2 B)4 C)8 D) 16 9. 3 variable k map contains cells []] A) 6 B) 8 C) 5 D) 3 10	4. A grouping of 8 bit	s in K-map known a	S		[]
A)NANDB)NOTC) ORD) none6.The code used for labeling the cells of k map is[]A) grayB) octalC) BCDD) none7.AND Gate requires Minimum number of inputs.[]A)2B)1C)4D) none8.A pair is a group of adjacent cells in a k-map[]A)2B)4C)8D) 169.3 variable k map contains cells[]A)6B)8C) 5D) 310 is a group of 8 adjacent cells in K-Map[]A) octetB)pairC) quadD) none11.don't care condition represented label as[]A) SB) XC) dD)both B&C12.The output levels are indicated by "X" or "d" in the truth tables and are called[]A) don't care conditionsB) mintermsC) outputD) none13.Which gate is not universal gate[]]A) NANDB) NORC) XORD) none14.Consider the following Boolean function of four variables f(w,x,y,z)=∑m(1,3,4,11,12,14) The function is[]]A) independent of one variableB)independent of two variables	A)byte	B) octet	C) quad	D) non	e	
6. The code used for labeling the cells of k map is	5. Example of UNIVE	RSAL GATE is			[]
A) grayB) octalC) BCDD) none7. AND Gate requires Minimum number of inputs.[]]A)2B)1C)4D) none8. A pair is a group of adjacent cells in a k-map[]]A)2B)4C)8D) 169. 3 variable k map contains cells[]]A) 6B) 8C) 5D) 310 is a group of 8 adjacent cells in K-Map[]]A) octetB)pairC) quadD) none11. don't care condition represented label as []][]]A) SB) XC) dD)both B&C12. The output levels are indicated by "X" or "d" in the truth tables and are called []][]]A) don't care conditionsB) mintermsC) outputD) none13. Which gate is not universal gate []]A) NANDB) NORC) XORD) none14. Consider the following Boolean function of four variables $f(w,x,y,z)=\summ(1,3,4,11,12,14)$ The function is []]A) independent of one variableB)independent of two variables	A)NAND	B)NOT	C) OR	D) none		
7. AND Gate requires Minimum number of inputs. [] A)2 B)1 C)4 D) none 8. A pair is a group of adjacent cells in a k-map []] A) 2 B) 4 C)8 D) 16 9. 3 variable k map contains cells []] A) 6 B) 8 C) 5 D) 3 10 is a group of 8 adjacent cells in K-Map []] A) octet B) pair C) quad D) none 11. don't care condition represented label as []] A) S B) X C) d D)both B&C 12. The output levels are indicated by "X" or "d" in the truth tables and are called []] A) don't care conditions B) minterms C) output D) none 13. Which gate is not universal gate []] A) NAND B) NOR C) XOR D) none 14. Consider the following Boolean function of four variables f(w,x,y,z)=∑m(1,3,4,11,12,14) The function is []] A) independent of one variable B)independent of two variables []	6. The code used for la	abeling the cells of k	map is		[]
A)2B)1C)4D) none8. A pair is a group of adjacent cells in a k-map[]A) 2B) 4C)8D) 169. 3 variable k map contains cells[]A) 6B) 8C) 5D) 310 is a group of 8 adjacent cells in K-Map[]A) octetB) pairC) quadD) none11. don't care condition represented label as[]A) SB) XC) dD)both B&C12. The output levels are indicated by "X" or "d" in the truth tables and are called[]A) don't care conditionsB) mintermsC) outputD) none13. Which gate is not universal gate[]]A) NANDB) NORC) XORD) none14. Consider the following Boolean function of four variables $f(w,x,y,z)=\summ(1,3,4,11,12,14)$ The function is[]A) independent of one variableB)independent of one variable[]	A) gray	B) octal	C) BCD	D) n	ione	
8. A pair is a group of adjacent cells in a k-map [] A) 2 B) 4 C)8 D) 16 9. 3 variable k map contains cells [] A) 6 B) 8 C) 5 D) 3 10 is a group of 8 adjacent cells in K-Map [] A) octet B)pair C) quad D) none 11. don't care condition represented label as [] A) S B) X C) quad D)both B&C 12. The output levels are indicated by "X" or "d" in the truth tables and are called _ [] A) don't care conditions B) minterms C) output D) none 13. Which gate is not universal gate [] A) NAND B) NOR C) XOR D) none 14. Consider the following Boolean function of four variables $f(w,x,y,z)=\summ(1,3,4,11,12,14)$ The function is [] A) independent of one variable B) independent two variables f(w, x, y, z) = $\summ(1,3,4,11,12,14)$ The function is []]	7. AND Gate requires	s Minimum nu	mber of inputs.		[]
A) 2 B) 4 C) 8 D) 16 9. 3 variable k map contains cells	A)2	B)1	C)4	D) none		
9. $3 \text{ variable k map contains } cells$ []A) 6 B) 8 C) 5 D) 3 10	8. A pair is a group of	adjacent cel	lls in a k-map		[]
A) 6 B) 8 C) 5 D) 3 10.	A) 2	B) 4	C)8	D) 16		
10 is a group of 8 adjacent cells in K-Map[]A) octetB) pairC) quadD) none11. don't care condition represented label as[]A) SB) XC) dD)both B&C12. The output levels are indicated by "X" or "d" in the truth tables and are called[]A) don't care conditionsB) mintermsC) outputD) none13. Which gate is not universal gate[]]A) NANDB) NORC) XORD) none14. Consider the following Boolean function of four variables $f(w,x,y,z)=\summ(1,3,4,11,12,14)$ The function is[]A) independent of one variableB)independent of two variables[]	9. 3 variable k map co	ntains cel	lls		[]
A)octetB)pairC) quadD) none11. don't care condition represented label as[]]A) SB) XC) dD)both B&C12. The output levels are indicated by "X" or "d" in the truth tables and are called _[]]A) don't care conditionsB) mintermsC) outputD) none13. Which gate is not universal gate[]]A) NANDB) NORC) XORD) none14. Consider the following Boolean function of four variables $f(w,x,y,z)=\summ(1,3,4,11,12,14)$ The function is[]]A) independent of one variableB)independent of two variables	A) 6	B) 8	C) 5	D) 3		
11. don't care condition represented label as [] A) S B) X C) d D)both B&C 12. The output levels are indicated by "X" or "d" in the truth tables and are called []] A) don't care conditions B) minterms C) output D) none 13. Which gate is not universal gate []]] A) NAND B) NOR C) XOR D) none 14. Consider the following Boolean function of four variables f(w,x,y,z)=∑m(1,3,4,11,12,14) The function is []] []] A) independent of one variable B)independent of two variables	10 is a group	of 8 adjacent cells in	K-Map		[]
A) SB) XC) dD)both B&C12. The output levels are indicated by "X" or "d" in the truth tables and are called _ []]]A) don't care conditionsB) mintermsC) outputD) none13. Which gate is not universal gate[]A) NANDB) NORC) XORD) none14. Consider the following Boolean function of four variables $f(w,x,y,z)=\summ(1,3,4,11,12,14)$ The function is[]A) independent of one variableB) independent of two variables	A)octet	B)pair	C) quad	D) none		
12. The output levels are indicated by "X" or "d" in the truth tables and are called _ []A) don't care conditionsB) mintermsC) outputD) none13. Which gate is not universal gate[]A) NANDB) NORC) XORD) none14. Consider the following Boolean function of four variables $f(w,x,y,z)=\summ(1,3,4,11,12,14)$ The function is[]A) independent of one variableB) independent of two variables	11. don't care condition	represented label as			[]
A) don't care conditions B) minterms C) output D) none 13. Which gate is not universal gate []] A) NAND B) NOR C) XOR D) none 14. Consider the following Boolean function of four variables f(w,x,y,z)=∑m(1,3,4,11,12,14) The function is []] []] A) independent of one variable B) independent of two variables	A) S	B) X	C) d	D)both B&C		
13. Which gate is not universal gate[]]A) NANDB) NORC) XORD) none14. Consider the following Boolean function of four variables $f(w,x,y,z)=\sum m(1,3,4,11,12,14)$ The function is[]]A) independent of one variableB) independent of two variables	12. The output levels an	re indicated by "X" or	r "d" in the truth tables an	nd are called	_ []
A) NANDB) NORC) XORD) none14. Consider the following Boolean function of four variables $f(w,x,y,z)=\sum m(1,3,4,11,12,14)$ The function is[]]A) independent of one variableB) independent of two variables	A) don't care con	ditions B) min	terms C) output	D) none		
 14. Consider the following Boolean function of four variables f(w,x,y,z)=∑m(1,3,4,11,12,14) The function is [] A) independent of one variable B)independent of two variables 	13. Which gate is not u	niversal gate			[]
function is[A) independent of one variableB) independent of two variables	,	,	,		,	
A) independent of one variable B) independent of two variables	14. Consider the follow	ing Boolean function	of four variables f(w,x,y	$(x,z) = \sum m(1,3,4,3)$	11,12,1	4) The
	function is				[]
	·		B)independer	nt of two variał	oles	
C) independent of three variables D) Dependant on all the variables	C) independent	of three variables	D) Dep	endant on all th	ne varia	ables

			QUEST	TION BANK 2	018
15. 4 variable k n	nap contains	_ cells		[]
A) 12	B) 16			D) 3	
16. In K-map Pai	r eliminates	variable from	output expression	. []
A) One	B)Two	C)Thre	e	D)Zero	
17. In K-map Qu	ad eliminates	variable fro	om output expression	on. []
A) One	B)Two	C)Thre	e	D)Zero	
18. In K-map oct	et eliminates	variable from	m output expressio	on. []
A) One	B)Two	C)Thre	e	D)Zero	
19.5 variable k m	ap contains	cells		[]
A) 32	B) 36	i	C) 15	D) 3	
20. The sum of all	the minterms of a give	n Boolean functio	on is equal to	[]
A) Zero	B)One	C)Two	D)T	Three	
21. The product of	all the maxterms of a	given Boolean fun	nction is equal to	[]
A) Zero	B)One	C)Two	D)T	Three	
22. Let $f(A,B) = A$	+B, simplified expressi	on for function f(f	f(x+y,y),z) is	[]
A) x+y+z	B)xyz	C)1	D)xy+z		
23. Maximum nur	mber of prime implicant	ts with n binary va	ariable in the reduce	ed expression is	[]
A) 2 ⁿ	B) 2*n	$C)2^{n-1}$	D)2+n		
24.The Logical exp	pression y=)= $\sum m(0,3,6)$	5,7,10,12,15) is eq	uivalent to	[]
A) $Y = \pi M(0,3,6,7)$	7,10 ,12,15)	B)y= π M(1,2,4	4.,5,8,9,11,13,14)		
C) $Y = \sum M(0,3,6,7)$	7,10 ,12,15)	B)y= $\sum M(1,2,4)$	4.,5,8,9,11,13,14)		
25. The minimum function $f = (x'+y)$	number of 2 input NAN y')(z+w)	ND gates required	to implement the fo	ollowing Boolea [an]
A) 3	B)4	C)5	D)6		
26.What is the value	ue of A+A'B			[]
A)A	B)B	C)0	D)A+B		
27 method i	is used for to simplify th	ne boolean express	sions	[]
A) K-map	B)Algebric rules	C)Tabular met	hod D)ALL		
Digital Logic Design					Page 15

					QUESTION	BANK	2018
28. The pictorial rep	resentation of truth	table is al	so called	as	-	[]
A) K-Map	B)Tabular map	C)Bo	oth A&B		D)None		
29. The map method	is modified by		_			[]
A) Vietch	B) charlas	C) l	karnaugh	D) no	ne		
30. The Sum of proc	duct Boolean expres	ssion repre	esented th	he symł	ool is	[]
Α) π	B) ∑	C)€		∞(D			
31. The Product of s	sum Boolean expres	ssion repre	esented th	ne symt	ool is	[]
Α) π	B) ∑	C)€		D)∞			
32 me	thod is also called	as Quine-l	Mc Clus	key me	thod	[]
A) K-map	B)Tabular	C)Gr	aph	D)No	ne		
33.The minimized ex	x pression of Y = A'	B'C+A'BO	C is	_		[]
A) A'B	B)A'C	C)AI	В	D)BC			
34. The minimized e	expression of Y=A'	B'C+A'B	C+ABC+	ABC'	is	[]
A) AC+BC	B) A+C	C)A'	°C+AB	D)AB			
35. The Boolean exp	pression is f(A,B,C,I	D) of m7	represen	tation is	5	[]
A) ABCD	B) ABC'D'	C)A'	BCD	D)A'l	B'C'D'		
35. The Boolean exp	pression is f(A,B,C,I	D) of M	12 repre	sentatio	on is	[]
A) A+B+C+D	B) A+B+6	C+'D'	C)A'+	-B+C+I	DD)A'+B'+C+D		
36. In K-map using t	the sequences codes	s are				[]
A) Excess-3	B)Gray		C)Bin	ary	D)BCD		
37. 2 NAND gates e	quivalent to f	unction.				[]
A)AND	2)OR C)	Ex-OR	D)Ex-	NOR			
38. 3 NAND gates e	quivalent to f	unction.				[]
A)AND	2)OR C)	Ex-OR	D)Ex-	NOR			
39.2 NOR gates eq	uivalent to fu	nction.				[]
A)AND	2)OR C)	Ex-OR	D)Ex-	NOR			
40.3 NOR gates equ	uivalent to fu	nction.				[]
A)AND	2)OR C)	Ex-OR	D)Ex-	NOR			

<u>UNIT – III</u>

Combinational Logic

1. A Combinational ci	rcuits consists of			[]
A) Input variables	B) logic g	ates C) output	variables D) al	l of the	ese
2 circuits needs	two binary inputs an	d two binary outputs.		[]
A) Full adder	B) half adder	C) sequential D) of	counter		
3. In half adder circuit	t the inputs are high s	sum is and carry		[]
A) 0,0	B) 0,1	C) 1,0	D) 1,1		
4. A is a combin	ational circuit that co	onverts binary informati	on from n inputs	s lines t	to a
maximum of 2 ⁿ uni	que output lines.			[]
A) Encoder	B) Decoder	C) both A & B	D) none of t	hese	
5 circuits needs	s three binary inputs	and two binary outputs.		[]
A) Full adder	B) half adder C)	combinational logic	D) none		
6. A decoder with n inp	uts then it produce	out puts		[]
A) 2n	B) 2^n	C)n	D) n+2	1.	c on
/. A is a combina unique output lines.	tional circuit that cor	verts binary informatio	n from n inputs	lines to	a of 2"
1 1	Decoder C) both A	& B D) none of	these	L	1
8. In which circuits me	,	,		[]
· -	its B) synchronous c		D) ne	one	
9. In full adder circuit	, the inputs are high s	sum is and carry		[]
B) 0,0	B) 0,1	C) 1,0	D) 1,1		
10. In full subtractor c	ircuit, the inputs are l	high sum is and carr	У	[]
A) 0,0	B) 0,1	C) 1,0	D) 1,1		
11. A is a special con	nbinational circuit de	signed to compare the b	inary variables.	[]
A) Multiplexer	B)Decoder	C)Comparator	D)Demultip	lexer	
12. A circuit with	n n inputs and produc	e^{2^n} outputs.		[]
A) Multiplexer	B)Decoder	C)Comparator	D)Demultip	lexer	
13 circuit acts a	as inverse operation of	of a decoder.		[]
A) Decoder B)	Multiplexer	C)Encoder	D)ALL		
14. A circuit with	n 2 ⁿ inputs and produ	ce n data outputs.		[]
A) Multiplexer	B) Encoder	C)Decoder	D)None		
15. In, if two	o or more inputs are	equal to 1 at the same ti	me, the input ha	ving th	e highest
Priority will take prece	dence.			[]
Digital Logic Design					Page 17

			QUESTION B	ANK 2	018
A)Encoder B)	priority encoder	C)Decoder	D)priority encod6	er	
16. In circuits	s consists of 2 ⁿ inpu	ts with one output		[]
A) Multiplexer	B) Encoder	C)De	coder D)	None	
·	nsists of 2^n input lir	nes and selection		[]
_	B) n C) 1	D) 2-		L	L
,	, , ,	, , , , , , , , , , , , , , , , , , ,		г	1
		e to implement 16*1 n		[]
,	B) 4 C) 3	D) 8			
-	beeding up the proce	ess by eliminating inter	r stage carry delay is	_	
addition			D) News	Ĺ]
	B) Carry Look Ahea		D) None	r	1
20. Parallel adder is al A) Binary I	B) Serial	C) Both A&l	P D) Nono	[]
21. In half Adder sum	,	,	D D) None	[]
A) AB+A'B'	B) AB'+A'E		B D) None	L]
·	,	half adders and	,	[]
A) 3, AND	B) 4, AND	C) 2, OR	D) 1, OR	L	1
		de input m=1 the circui		[1
A) Adder	B) Subtracto		B D) Multiplayer	L	L
,	,	de input m=0 the circui	, 1 ,	[]
A) Adder	B) Subtracto	-	B D) Multiplayer	-	-
25. The adder	is a sequential circ	uit	· · ·	[]
A) Serial	B) parallel	C) Both A & B	D) None		
26. The adder	is a Combinational	circuit]]
A) Serial	B) parallel	C) Both A & B	D) None		
27. The adder i	s work as slower			[]
A) Serial	B) parallel	C) Both A & B	D) None		
28. The adder i	s work as faster			[]
A) Serial	B) parallel	C) Both A & B	D) None		
29. A is a mult	1 1	1 1 0	ts	[]
A) Multiplexer	B) Demultip	,	D) None		
30. What are basic gate				[]
,		B) 2-Ex-OR and 1- C			
,		D) 1-Ex-OR, 2-AN		г	1
		0 then sum is and		[]
A) 0,0	B) 0,1	C) 1,0	D) 1,1		
32. In full subtracto	or the inputs are low	then difference is	& barrow is	[]
A) 0,0	B) 0,1	C) 1,0	D) 1,1		
Digital Logic Design					Page 18

	(QUESTION BA	NK 2	018			
33. In full subtractor the inputs are high then difference is & barrow is							
B) 0,1	C) 1,0	D) 1,1					
so called as			[]			
B) BCD Adder	C) Binary Subtractor	r D) None					
hift register			[]			
B) Parallel	C) Both A&B	B) None					
ere are no selection line	es		[]			
B) Demultiplexer	C) Decoder D) No	one					
e selection of specific	output line is control b	by the value of	selecti	on lines			
			[]			
B) Demultiplexer	C) Decoder D) No	one					
plified carry output is			[]			
B) AB'+A'C+BC'	C) A'B+A'C+BC	D) None					
nplified carry output is			[]			
B) AB	C) A'B	D) None					
gister with parallel load	d capacity		[]			
B) Parallel	C) Both A&B	B) None					
	 B) 0,1 B) 0,1 Co called as B) BCD Adder hift register B) Parallel ere are no selection line B) Demultiplexer e selection of specific B) Demultiplexer plified carry output is B) AB'+A'C+BC' nplified carry output is B) AB gister with parallel load 	 e inputs are high then difference is & B) 0,1 C) 1,0 co called as B) BCD Adder C) Binary Subtractor hift register B) Parallel C) Both A&B ere are no selection lines B) Demultiplexer C) Decoder D) Ne e selection of specific output line is control to a specific output line is control to be a selection of specific output lin	 inputs are high then difference is& barrow is B) 0,1 C) 1,0 D) 1,1 D) 1,1 D) aralled as B) BCD Adder C) Binary Subtractor D) None hift register B) Parallel C) Both A&B B) None ere are no selection lines B) Demultiplexer C) Decoder D) None e selection of specific output line is control by the value of B) Demultiplexer C) Decoder D) None plified carry output is B) AB'+A'C+BC' C) A'B+A'C+BC D) None nplified carry output is B) AB C) A'B D) None 	B) 0,1 C) 1,0 D) 1,1 (o called as [B) BCD Adder C) Binary Subtractor D) None hift register [B) Parallel C) Both A&B B) None ere are no selection lines [B) Demultiplexer C) Decoder D) None e selection of specific vuput line is control by the value of selection b) Demultiplexer C) Decoder D) None e selection of specific C) Decoder D) None [B) Demultiplexer C) Decoder D) None [B) AB'+A'C+BC' C) A'B+A'C+BC D) None nplified carry output is [B) AB C) A'B D) None [B) AB C) A'B D) None			

<u>UNIT – IV</u> Synchronous Sequential Logic

1. In D-flip flop the inp A) 1		C) X	D) 10		
2. In asynchronous are	,	,	,]	
-	B) difficult	C) both	A&B D) medium	
3. In SR latch the S re	ferred to]	
A) Synchronous		C) start	D) none	
4. In T flip flop the inp	out T=1 then Qn+1 is	· · ·		[
	B) Qn'	C) Qn+1	D) 0		
5. In SR latch s=1,r=1	the state is			[
A) No change	B) reset	C) set D) inde	terminate		
6. In synchronous cour	nter, if then flip	flop complements	the input at the	time of c	loc
edges				[
, ,	C) both A & B	,			
7. In Binary counter co	ounts in binary coded d	ecimal from 0000	to and bac	k to 0000	
				[
, , , , ,	11 C) 1000	D) 0000		_	
8. 10. In SR latch the S				[
, ,	, ,	D) none			
9. A is a circular	shift register with only	one flip flop beir	ig set at any part	icular tim	e, a
others are cleared.			D \		
	B) shift register	C) binary count	er D) none o	of these	
10. A sequential circuits				l	
	B) logic gates C) bo		D) all of t	these	
11. D-flip flop is also kr	nown as				
]					
	B) SR latch C) JI	K flip flop	D) none	-	
12. Flip flops are used for				[
A) Memory element	B) delay element	C) both	D) none		
13. A J-K flip flop is in	" No Change " conditi	on when the value	e of	[
A) J=0 K=0 B) J=	1 K=1 C) J=0 K=1	D) J=1 K=0			
14. How is a JK Flip flo	op made to toggle state			[
A) J=0 K=0 B) J=	1 K=1 C) J=0 K=1	D) J=1 K=0			
15. In counter al	l the flip flops are cloc	cked simultaneous	ly	[
A) Asynchronous	B)Synchronous	C) Ripple	D) none of these		
			e of	[
16. A J-K flip flop is in	No Change Conun			L.	
16. A J-K flip flop is in A) J=0 K=0	-		D) J=1 K	=0	
 16. A J-K flip flop is in A) J=0 K=0 17.A is a register for 	B) J=1 K=1	C) J=0 K=1	,		

	QUESTION BANK 2018
A) Counter B) Register C) Flip Flop	D) Decoder
18. How is a JK Flip flop made to toggle state	
[]	
A) J=0 K=0 B) J=1 K=1 C) J=0 K=1	D) J=1 K=0
19. In counter all the flip flops are clocked simultaneou	usly []
A) Asynchronous B) Synchronous C) Ri	•
20. A is a group of flip flops	
A) Register B) latches C) counter	D) none of these
21. In SR flip flop S=1,R=0 then the state is	[]
A) set B) reset C) nochange	
22. D-flip flop is also known as	[
1	
A) Delay flip flop B) SR latch C) JK flip flop	D) none
23.How is a JK Flip flop made to toggle state	, []
A) J=0 K=0 B) J=1 K=1 C) J=0 K=1 D) J=1 K=0	
24. In counter all the flip flops are clocked simultaneou	usly []
A) Asynchronous B)Synchronous C) Ripple	•
	D) none of these
25.In SR latch s=1,r=1 the state is	D) indeterminete
A) No changeB) resetC) set26. In which circuits memory is required	D) indeterminate
A) Sequential circuits B) synchronous circuits C) bo	
27. Flip flops are used for	[]
A) Memory element B) delay element C) both	
28. 64 GB=	[]
A) 2^{30} B) 2^{36} C) 2^{32} D) none of th	
29.In JK flip flop $j=1,k=1$ then the state is A) Q_n^{-1} B) Q_n C) both D) no	ne of these
30. In which circuits memory is not required D in D	
A) Sequential circuits B) synchronous circuits C) bo	th D) none
31.In synchronous counter , if then flip flop complement	,
edges	-
A)T=1 B) J=K=1 C) both A & B D) none	
32. Binary counter counts in binary coded decimal from 0000	to and back to 0000 []
A)1001 B) 1111 C) 1000 D) 0000	
33. In SR latch the S referred to	[]
A)Synchronous B) set C) start D) none	L J
34. In the binary synchronous counter if the present state of a	4-bit counter is $A_2A_2A_4A_6=0011$
	г 1
Inen ine nexi count is	
then the next count is A) 0010 B) 0100 C) 0101 D) none of the second seco	
A) 0010 B) 0100 C) 0101 D) none of th	
A) 0010 B) 0100 C) 0101 D) none of th 35. A is a circular shift register with only one flip flop be	
A) 0010 B) 0100 C) 0101 D) none of th 35. A is a circular shift register with only one flip flop be others are cleared.	eing set at any particular time, all []
A) 0010 B) 0100 C) 0101 D) none of th 35. A is a circular shift register with only one flip flop be	eing set at any particular time, all [] unter D) none of these

			QUESTION BANK	2018
A) S+R'Qn	B) S'+RQn	C) S+R	D) Qn	
37. The characteristic e	, .	,	-) (]
A) JQn'+KQn	B) JQn'+K'Qn	C) JQn+KQ	(n D) None	
38. The characteristic e	quation of T Flipflop i	s Qn+1=	[]
A) TQn'+T'Qn	B) TQn'+T	'Qn' C) 7	TQn+TQn D) None
39. The characteristic e	quation of D Flipflop	is Qn+1=	[]
A) DQn	B) D'Qn'	C) D'	D) D	
40 seq	uential circuit is easie	er to design	[]
A) Asynchronous	B)Synchronous	C) Ripple	D) none of these	

<u>UNIT – V</u> <u>Memory and Programmable Logic , Digital Logic Circuits</u>

	A) PAL		B) PLA	C) PRO	Μ	D) no	ne of t	these
2.	·	s the binary ir	formation perr	,		, -	ſ	1
	A) RAM	J	B) ROM	•	A & B	D) no	ne of t	these
	,	code techniqu	,	oes not have any er]
	A) 10001 B)0000 C) 1001					D) 11		-
4.	The process of retrieving the information from the memory is calledop					peratior	n. []
	A) Read	0	B) Write	C)Both	-	D)No		
5.	A group of eight bits is called a				[]		
	A) Bits B) byte C) kilobyte					D) no	ne of t	these
6.	The read only	memory is a	device		-		[]
	A) Programm	nable logic	B) combina	tional logic C) A &	c B	D) no	ne	
7.	ROM perform	ns <u>op</u> erati	on.				[]
	A) Read		B) Write	C) Both	A&B	D)No	ne	
6.	Types of ROI	M memories a	are				[]
	A) EPROM	B) EEPRON	M	C) PROM	D) Al	l of thes	se.	
7.	EEPROM ab	breviated as_					[]
	A) Erasable – Erasable PROM B) Electrically Erasable PRO					DM		
	C) Electrically- Electrically PROM D) none of these							
8.	is a no	nsaturated dig	gital logic fami	ly.			[]
	A) ECL		B) TTL	C) both	A & B	D) no	ne of t	these
9.	The is	a programma	ble logic devic	e with a fixed OR a	array and a pr	ogrami	nable	AND
	array.						[]
	A) PAL	B) PLA	C) PROM	D) none of thes	e			
13	stores	the binary in	formation perm	nanently.			[]
	A)RAM	B) ROM	C) both A &	& BD) none of thes	e			
[4.]	In Hamming c	ode techniqu	e, if the data do	bes not have any err	for, then $C =$		[]
	A)10001	B)0000	C) 1001	D) 1111				
15.7	The process of	f retrieving th	e information	from the memory is	called	_ opera	ation.	
							[]
	A) Read	B) write	C) both read	d & write D) none				
6.	In the binary	synchronous	counter if the p	present state of a 4-l	bit counter is	A_3A_2A	$A_1A_0=0$	011,
tł	nen the nest co	ount is					[]
	A) 0010	B) 0100	C) 0101	D) none of thes	e			
17.1	RAM perform	is op	perations				[]
A)	Read	B) v	vrite	C) both A&B	D)nor	ne		
18.1	PAL stands						[]

A) Programi	nable logic array H	B) programn	nable array logic (C) both A &	BD) none of	these
19. A memory w A) Words	rite stores binary i B		in group of bits ca C) GB	alled	D) none]
,		· •	,		[]
A) capacitors	de of with B) regist	er	C) latches	D) co		1
	pes of memories a				[1
A) 2	B) 3		C) 4	D) 5	-	-
,	eviated as		,	,	1]
	M B)Determina	te RAM C)Dynai	mic RAM	-	-
	$2^k *n$ ROM is requ				[]
A) 2 ⁿ				D) n	Ľ	
,	emory enable input		,	,	then which in	dicates
operation to	• •]
A) read) write	C) both	A & B	-	-
<i>,</i>	code method if the					
A) 5		5) 4	C) 3	re purity ones	D) none of D	
/	ormation is stored i	/	C) 5]
	B) decim		C) octal	D) no	ne	1
C) Transistor- Ta 29.The is	ransistor Logic amsmitter Logic a programmable lo	D) no	one of these	-	ogrammable .	AND
array.				D) = a	L L]
A)PAL	B) PLA	ation norma	C) PROM	D) 110	ne of these	1
	s the binary inform	-	-	A ۹- D		
A) RAM) ROM	,		D) none of	unese
-	code technique, if		•]
A)10001		b)0000	C) 1001		D) 1111	1
-	of retrieving the inf		•	-]
A) Read) Write	C)Both	A&B	D)None	1
0 1	ght bits is called a		C) Irilaharta	D)	na of these]
A)Bits	B) byte	d	C) kilobyte	D) no	ne of these	ı
-	memory is a			D]
A) Programi	mable logic B) combinati	onal logic C) A &	сВ	D) none	
35 The is	a programmable lo	oric device	with a fixed OP as	rray and a pr	oorammahla	AND
	a programmable f		with a fired OK a	riay and a pl	r	-
array.)	fthaac	l	
A)PAL	,	C) PROM) none o	1 mese	r	ı
	s the binary inform	-	•		Ĺ]
A)RAM	B) ROM C) doth A &	BD) none of these	e		
gital Logic Design						Page 2

		QUESTION BAN	K 2	018
37. In Hammin	g code techniqu	ie, if the data does not have any error, then $C =$	[1
		C) 1001 D) 1111	L	1
38. The process	s of retrieving the	ne information from the memory is called operation	ation.	
			[]
A) Read	B) write	C) both read & write D) none		
39. A group of	eight bits is cal	led a	[]
A)Bits	B) byte	C) kilobyte D) none of these		
40. The read on	ly memory is a	device	[]
A)Programmab	le logic B) c	ombinational logic C) A & B D) none		

Prepared by: Prepared by: P Nirupama, G Prasad Babu, V Balaji